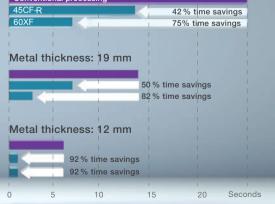
The in-built formula for short piercing times. $E = h \cdot f.p = \frac{h}{\lambda} \cdot c = \lambda \cdot f. P = \frac{E}{r}$ $f = \frac{c}{\lambda} = \frac{3 \cdot 10^8 m/s}{1.07 \cdot 10^{-6} m} = 2.8 \cdot 10^{14} s^{-1}$ $E = h \cdot f = 6.6 \cdot 10^{-34} J_S \cdot 2.8 \cdot 10^{14} s^{-1} = 1.85 \cdot 10^{-19} J$ $p = \frac{h}{\lambda} = \frac{6.6 \cdot 10^{-34} J_S}{1.07 \cdot 10^{-6} m} = 6.2 \cdot 10^{-28} H_J v$ Pulse energy 150/ $1.85 \cdot 10^{-19} J = 8.1 \cdot 10^{20}$ photons per pulse

Billions of extra photons.

Up to 98% shorter piercing time for mild steel.


Shorter piercing time for medium-thick and thick sheet metal

Thanks to the skilful combination of high-energy pulse peaks and a jet nozzle, piercing times can be reduced by up to 98%. In the last few years, the metal thickness suitable for high-peak piercing has increased from 8 to 25 mm.


	(
Metal thickness: 25 mm	

Cross-Flow

Metal thickness: 25 mm

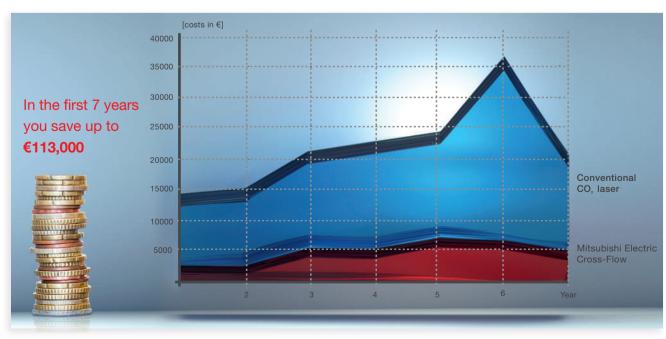
Strong start, strong continuation.

19

Costs of conventional CO₂ laser

High maintenance costs

- Electrode wear
- Glass tubes
- Many mirrors
- Gas turbine at over 700 km/h

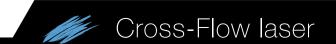

High laser gas consumption

Conventional CO₂ laser systems are maintenance-intensive and expensive.

Achieving more with less.

Cross-Flow scores with the components it does without.

Cuts maintenance costs by up to 77 %



Patented.

The Cross-Flow resonator developed by Mitsubishi Electric needs maintenance less often than conventional CO_2 resonators. In addition, the resonator itself contains far fewer wear parts. As a result, maintenance costs are up to 77 % lower than for conventional CO_2 lasers.

Cross-Flow

Because of the gas-sealed resonator, the laser gas is replaced not continuously, but only once per day. This reduces laser gas consumption dramatically.

Oops! Nobody told me about that.

CROSS-FLOW Your piggy bank

eco Changes

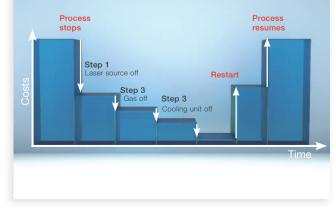
Energy savings.

Combines economy with top-quality cuts.

Just-on-time discharge method


The just-on-time discharge method reduces power consumption whenever the laser beam is switched off.

Cutting operating costs with energy-saving control and drive units


Energy savings have been achieved with perfectly matched Mitsubishi Electric control and drive units.

ECO mode

During idling, the intelligent ECO mode switches step-by-step into standby. In standby mode, costs can thus be cut by up to 99 %. Reactivation of the laser system takes no more than 3 minutes.

Give your electricity meter a break. Up to 50 % efficiency!

Miracle of efficiency

Owing to the high conversion efficiency of the Fiber laser, you can slash your electricity bill. The energy efficiency achieves values of between 40 and 50% – exceptional for laser technology.

Cutting operating costs with energy-saving control and drive units

Energy savings have been achieved with perfectly matched Mitsubishi Electric control and drive units.

ECO mode

During idling, the intelligent ECO mode switches step-by-step into standby. In standby mode, costs can thus be cut by up to 70%. Reactivation of the laser system takes approx. one minute.

Less electricity, lower costs.